Embedding Arbitrary Graphs of Maximum Degree Two

نویسنده

  • S. BRANDT
چکیده

Let S(H) be the minimum degree of the graph H. We prove that a graph H of order n with S(H) ^ (2n —1)/3 contains any graph G of order at most n and maximum degree A(G) < 2 as a subgraph, and this bound is best possible. Furthermore, this result settles the case A(G) = 2 of the well-known conjecture of Bollobas, Catlin and Eldridge on packing two graphs with given maximum degree.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degree distance index of the Mycielskian and its complement

In this paper, we determine the degree distance of the complement of arbitrary Mycielskian graphs. It is well known that almost all graphs have diameter two. We determine this graphical invariant for the Mycielskian of graphs with diameter two.

متن کامل

k-forested choosability of graphs with bounded maximum average degree

A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prov...

متن کامل

Partitioning into Two Graphs with Only Small Components

The paper presents several results on edge partitions and vertex partitions of graphs into graphs with bounded size components. We show that every graph of bounded tree-width and bounded maximum degree admits such partitions. We also show that an arbitrary graph of maximum degree three has a vertex partition into two graphs, each of which has components on at most two vertices, and an edge part...

متن کامل

On reverse degree distance of unicyclic graphs

The reverse degree distance of a connected graph $G$ is defined in discrete mathematical chemistry as [ r (G)=2(n-1)md-sum_{uin V(G)}d_G(u)D_G(u), ] where $n$, $m$ and $d$ are the number of vertices, the number of edges and the diameter of $G$, respectively, $d_G(u)$ is the degree of vertex $u$, $D_G(u)$ is the sum of distance between vertex $u$ and all other vertices of $G$, and $V(G)$ is the...

متن کامل

An Extension of the Blow-up Lemma to Arrangeable Graphs

The Blow-up Lemma established by Komlós, Sárközy, and Szemerédi in 1997 is an important tool for the embedding of spanning subgraphs of bounded maximum degree. Here we prove several generalisations of this result concerning the embedding of a-arrangeable graphs, where a graph is called aarrangeable if its vertices can be ordered in such a way that the neighbours to the right of any vertex v hav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993